
Python: Data Structures
FOSSEE

1 Basic Looping

1.1 while

In []: a, b = 0, 1
In []: while b < 10:

...: print b,

...: a, b = b, a + b # Fibonacci Sequence

...:

Basic syntax of while loop is:

while condition:
statement1
statement2

All statements are executed, till the condition statement evaluates to True.
1.2 for and range

range(start, stop, step)
returns a list containing an arithmetic progression of integers.
Of the arguments mentioned above, both start and step are optional.
For example, if we skip third argument, i.e step, default is taken as 1. So:

In []: range(1,10)
Out[]: [1, 2, 3, 4, 5, 6, 7, 8, 9]

Note: stop value is not included in the list.
Similarly if we don’t pass first argument (in this case start), default is
taken to be 0.

In []: range(10)
Out[]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In case third argument is mentioned(step), the jump between consecutive
members of the list would be equal to that.

In []: range(1,10,2)
Out[]: [1, 3, 5, 7, 9]

1

for and range
As mentioned previously for in Python is used to iterate through the list
members. So for and range can be used together to iterate through re-
quired series. For example to get square of all numbers less then 5 and
greater then equal to 0, code can be written as:

In []: for i in range(5):
....: print i, i * i
....:
....:
0 0
1 1
2 4
3 9
4 16

2 list

In []: num = [1, 2, 3, 4] # Initializing a list
In []: num
Out[]: [1, 2, 3, 4]

2.1 Accessing individual elements

In []: num[1]
Out[]: 2

Note: Index of list starts from 0.

In []: num[5] # ERROR: throws a index error
IndexError: list index out of range
In []: num[-1]
Out[]: 4

Note: -1 points to last element in a list. Similarly to access third last ele-
ment of a list one can use:

In []: num[-3]
Out[]: 2

2

2.2 list operations

In []: num += [9, 10, 11] # Concatenating two lists
In []: num
Out[]: [1, 2, 3, 4, 9, 10, 11]

list provides append function to append objects at the end.

In []: num = [1, 2, 3, 4]
In []: num.append(-2)
In []: num
Out[]: [1, 2, 3, 4, -2]

Working of append is different from + operator on list. Till here both will
behave as same. But in following case:

In []: num = [1, 2, 3, 4]

In []: num + [9, 10, 11]
Out[]: [1, 2, 3, 4, 9, 10, 11]

In []: num.append([9, 10, 11]) # appending a list to a list

In []: num
Out[]: [1, 2, 3, 4, [9, 10, 11]] # last element is a list

when one attempts to append a list(in above case [9, 10, 11]) to a list(num)
it adds list as a single element. So the resulting list will have a element
which itself is a list. But + operator would simply add the elements of sec-
ond list.

2.3 Miscellaneous

In []: num = [1, 2, 3, 4]
In []: num.extend([5, 6, 7]) # extend list by adding elements
In []: num
Out[]: [1, 2, 3, 4, 5, 6, 7]
In []: num.reverse() # reverse the current list
In []: num
Out[]: [7, 6, 5, 4, 3, 2, 1]
In []: num.remove(6) # removing first occurrence of 6

3

In []: num
Out[]: [7, 5, 4, 3, 2, 1]
In []: len(num) # returns the length of list
Out[]: 6
In []: a = [1, 5, 3, 7, -2, 4]
In []: min(a) # returns smallest item in a list.
Out[]: -2
In []: max(a) # returns largest item in a list.
Out[]: 7

2.4 Slicing

General syntax for getting slice out of a list is
list[initial:final:step]

In []: a = [1, 2, 3, 4, 5]
In []: a[1:-1:2]
Out[]: [2, 4]

Start slice from second element(1), till the last element(-1) with step size of
2.

In []: a[::2]
Out[]: [1, 3, 5]

Start from beginning(since initial is blank), till last(this time last ele-
ment is included, as final is blank), with step size of 2.
Apart from using reverse command on list, one can also use slicing in
special way to get reverse of a list.

In []: a[-1:-4:-1]
Out[]: [5, 4, 3]

Above syntax of slice can be expressed as, “start from last element(-1), go
till fourth last element(-4), with step size -1, which implies, go in reverse
direction. That is, first element would be a[-1], second element would
be a[-2] and so on and so forth.”
So to get reverse of whole list one can write following slice syntax:

In []: a[-1::-1]
Out[]: [5, 4, 3, 2, 1]

Since final is left blank, it will traverse through whole list in reverse
manner.

4

Note: While reverse reverses the original list, slicing will just result in a
instance list with reverse of original, which can be used and worked upon
independently.

2.5 Containership

in keyword is used to check for containership of any element in a given
list.

In []: a = [2, 5, 4, 6, 9]
In []: 4 in a
Out[]: True

In []: b = 15
In []: b in a
Out[]: False

3 Tuples

Tuples are sequences just like Lists, but they are immutable, or items/ele-
ments cannot be changed in any way.

In []: t = (1, 2, 3, 4, 5, 6, 7, 8)

Note: For tuples we use parentheses in place of square brackets, rest is
same as lists.

In []: t[0] + t[3] + t[-1] # elements are accessed via indices
Out[]: 13
In []: t[4] = 7 # ERROR: tuples are immutable

Note: elements cant be changed!

4 Dictionaries

Dictionaries are data structures that provide key-value mappings. They
are similar to lists except that instead of the values having integer indexes,
they have keys or strings as indexes.
A simple dictionary can be created by:

5

In []: player = {’Mat’: 134,’Inn’: 233,
’Runs’: 10823, ’Avg’: 52.53}

For above case, value on left of ’:’ is key and value on right is correspond-
ing value. To retrieve value related to key ’Avg’

In []: player[’Avg’]
Out[]: 52.530000000000001

4.1 Element operations

In []: player[’Name’] = ’Rahul Dravid’ #Adds new key-value pair.
In []: player
Out[]:
{’Avg’: 52.530000000000001,
’Inn’: 233,
’Mat’: 134,
’Name’: ’Rahul Dravid’,
’Runs’: 10823}
In []: player.pop(’Mat’) # removing particular key-value pair
Out[]: 134
In [21]: player
Out[21]: {’Avg’: 52.530000000000001, ’Inn’: 233,

’Name’: ’Rahul Dravid’, ’Runs’: 10823}

In []: player[’Name’] = ’Dravid’
In []: player
Out[23]: {’Avg’: 52.530000000000001, ’Inn’: 233,

’Name’: ’Dravid’, ’Runs’: 10823}

Note: Duplicate keys are overwritten!
4.2 containership

In []: ’Inn’ in player
Out[]: True
In []: ’Econ’ in player
Out[]: False

6

Note: Containership is always checked on ’keys’ of dictionary, never on
’values’.

4.3 Methods

In []: player.keys() # returns list of all keys
Out[]: [’Runs’, ’Inn’, ’Avg’, ’Mat’]

In []: player.values() # returns list of all values.
Out[]: [10823, 233,

52.530000000000001, 134]

5 Sets

are an unordered collection of unique elements.
Creation:

In []: s = set([2,4,7,8,5]) # creating a basic set
In []: s
Out[]: set([2, 4, 5, 7, 8])
In []: g = set([2, 4, 5, 7, 4, 0, 5])
In []: g
Out[]: set([0, 2, 4, 5, 7]) # No repetition allowed.

Some other operations which can be performed on sets are:

In []: f = set([1,2,3,5,8])
In []: p = set([2,3,5,7])
In []: f | p # Union of two sets
Out[]: set([1, 2, 3, 5, 7, 8])
In []: f & p # Intersection of two sets
Out[]: set([2, 3, 5])
In []: f - p # Elements in f not is p
Out[]: set([1, 8])
In []: f ^ p # (f - p) | (p - f)
Out[]: set([1, 7, 8]))
In []: set([2,3]) < p # Test for subset
Out[]: True

7

